Intracortical mechanism of stimulus-timing-dependent plasticity in visual cortical orientation tuning.

نویسندگان

  • Haishan Yao
  • Yaosong Shen
  • Yang Dan
چکیده

Visual stimuli are known to induce various changes in the receptive field properties of adult cortical neurons, but the underlying mechanisms are not well understood. Repetitive pairing of stimuli at two orientations can induce a shift in cortical orientation tuning, with the direction and magnitude of the shift depending on the temporal order and interval between the pair. Although the temporal specificity of the effect on the order of tens of milliseconds strongly suggests spike-timing-dependent synaptic plasticity (STDP) as the underlying mechanism, it remains unclear whether the modification occurs within the cortex or at earlier stages of the visual pathway. In the present study, we examined the involvement of an intracortical mechanism in this functional modification. First, we measured interocular transfer of the shift induced by monocular conditioning. We found complete transfer of the effect at both the physiological and psychophysical levels, indicating that the modification occurs largely in the cortex. Second, we analyzed the spike timing of cortical neurons during conditioning and found it commensurate with the requirement of STDP. Finally, we compared the measured shift in orientation tuning with the prediction of a model circuit that exhibits STDP at intracortical connections. This model can account for not only the temporal specificity of the effect but also the dependence of the shift on both orientations in the conditioning pair. These results indicate that modification of intracortical connections is a key mechanism in the stimulus-timing-dependent plasticity in orientation tuning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulus Timing-Dependent Plasticity in Cortical Processing of Orientation

The relative timing of presynaptic and postsynaptic spikes plays a critical role in activity-induced synaptic modification. Here we examined whether plasticity of orientation selectivity in the visual cortex depends on stimulus timing. Repetitive pairing of visual stimuli at two orientations induced a shift in orientation tuning of cat cortical neurons, with the direction of the shift depending...

متن کامل

Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity.

The origin of orientation selectivity in visual cortical responses is a central problem for understanding cerebral cortical circuitry. In cats, many experiments suggest that orientation selectivity arises from the arrangement of lateral geniculate nucleus (LGN) afferents to layer 4 simple cells. However, this explanation is not sufficient to account for the contrast invariance of orientation tu...

متن کامل

Dynamic Modification of Cortical Orientation Tuning Mediated by Recurrent Connections

Receptive field properties of visual cortical neurons depend on the spatiotemporal context within which the stimuli are presented. We have examined the temporal context dependence of cortical orientation tuning using dynamic visual stimuli with rapidly changing orientations. We found that tuning to the orientation of the test stimulus depended on a briefly presented preceding stimulus, with the...

متن کامل

Bottom-up and top-down dynamics in visual cortex.

A key emergent property of the primary visual cortex (V1) is the orientation selectivity of its neurons. Recent experiments demonstrate remarkable bottom-up and top-down plasticity in orientation networks of the adult cortex. The basis for such dynamics is the mechanism by which orientation tuning is created and maintained, by integration of thalamocortical and intracortical inputs. Intracellul...

متن کامل

V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical sharpening.

Orientation adaptation and perceptual learning change orientation tuning curves of V1 cells. Adaptation shifts tuning curve peaks away from the adapted orientation, reduces tuning curve slopes near the adapted orientation, and increases the responses on the far flank of tuning curves. Learning an orientation discrimination task increases tuning curve slopes near the trained orientation. These c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 14  شماره 

صفحات  -

تاریخ انتشار 2004